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@& Teaching Goals

By the end of this section, you should be able to:

1.

2,

Provide an overview of metabolic pathways relevant to drug
metabolism.

Understand phase | and phase Il metabolism and their role in
drug transformation.

Explain the concept of prodrugs and their activation via
metabolism.

Recognize the variability in enzyme expression and the impact
of isoforms (e.g., CYPs) on drug metabolism.

Describe metabolic reaction kinetics using mass action,
Michaelis-Menten, and Hill equations.

Understand enzyme inhibition and activation, and how they
affect drug clearance.

Explore drug-drug interactions mediated by metabolic pathways.



Pharmacokinetics
The principles of ADME

Metabolism
How is it broken down?

>>> > > >>

ADME

ADME processes determine
pharmacokinetics

Absorption
How will it get in?

e Absorption

e Distribution

e Metabolization
<\ R e Elimination

How does it leave?



Stanford Pathways of Human Metabolism
https:/metabolicpathways.stanford.edu/
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Drug Metabolism in a Nutshell

e Metabolism of xenobiotics is often divided into 3 Electrophiles
phases: modification, conjugation, and excretion. Lipophilic R—R R=0 > R-SG
B Glutathione
e Cytochrome P450 (CYP) main players in phase | aEaEy 0 conjugation
(modification) CYP Hydrophilic
e  UDP-glucuronosyltransferases (UGT) main players R Phase | Phasell
phase Il (conjugation)
Hydrolysis /—P R-SO,H
e ATP-binding cassette (ABC) and Reduction =lfetion o
transporters are main drug transporters R-OH R-SH R-NH, orration ¢
. , Nucleophiles @~ —— R-Gl
e  Multiple isoforms of CYP, UGT, ABC and SLC with Glucuronidation | JGT

different substrate specificity

e Multiple organs
o Intestine: often metabolization during
absorption
o  Liver: main organ of drug metabolism
o  Kidneys: minor metabolism & excretion of
(modified) compounds in the urine

https://en.wikipedia.org/wiki/Drug_metabolism
Created with Biorender.com.
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Protein
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Large Variability & Multitude of Isoforms (Human Liver
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Dapagliflozin Example (SGLT2 inhibitor)

(100%)

Qlu
{1

Qlu
2

Qre

' Qre g
(61%) i}
Qhv

—
(61%)

— <
Hepatic vein
(20%)

Liver

Portal vein
(15%)

Qha
Fiepatic artery
(5%)

~16% DAP
~21% Total

UGT1A9

D

reabsorption
@
i

©

~60-80% ~1-2%

plasma [pM]
o = o
N w »

dapagliflozin
o
o

o
o

o
IS

o
w

dapagliflozin-3-0O-
glucuronide plasma [puM]
o o
- N

o
o

—Sim
-#- RIF£SD (n=14)
~@- MFA£SD (n=16)
0 5 10 15 20 25
time [hr]
— Sim

-#@- RIF£SD (n=14)
-@- MFA£SD (n=16)

0 5 10 15 20 25
time [hr]

urine [pmole]

dapagliflozin
o

o
»

I
>

e
w

°
N

o
=)

dapagliflozin-3-0-
glucuronide urine [pmole]

e e
o N B

o N B O ©

— Sim
-#- RIF£SD (n=14)
-@- MFA%SD (n=16)

0 5 10 15 20 25
time [hr]

— Sim
-#- RIF£SD (n=14)
-@- MFA£SD (n=16)

0 5 10 15 20 25
time [hr]

Figure 55: Simulation of Kasichayanula et al. .




Prodrugs

A prodrug is a pharmacologically inactive or less active
compound that requires metabolic conversion to become
therapeutically active.

Metabolic activation is usually carried out by enzymes in the
liver, intestine, or plasma (e.g., esterases, cytochrome
P450s).

Why use prodrugs?

Improve oral absorption and bioavailability
Enhance tissue targeting

Reduce side effects or toxicity

Overcome formulation challenges

Clinical Examples:

e Enalapril — Enalaprilat
e Codeine — Morphine
e Clopidogrel — Active thiol metabolite (via CYP2C19)

Fralish, Z., Chen, A., Khan, S. et al. The landscape of small-molecule prodrugs. Nat Rev
Drug Discov 23, 365-380 (2024). https://doi.org/10.1038/s41573-024-00914-7

@ Classical prodrug strategy
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a Prodrug design goals (n =95)
Improved bioavailability (53%)
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Prodrugs & Metabolic Activation

Examples of prodrugs that have had a substantial market impact.
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Fralish, Z., Chen, A., Khan, S. et al. The landscape of small-molecule prodrugs. Nat Rev
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Metabolic Reaction Rates

In pharmacokinetics and enzymology, the rate at which reactions occur is
crucial. Different mathematical models are used to describe these rates, with
some of the most common being the Mass-Action model, the
Michaelis-Menten model, and the Hill equation. Here's a brief summary of
each:

1. Mass-Action Model: This model is one of the simplest and is based on the
principle that the rate of a reaction is directly proportional to the concentration
of the reacting substances. For a reaction A + B — C, the rate would be
expressed as Rate = KAB, where k is the rate constant, and A and B are the
concentrations of A and B.

2. Michaelis-Menten Model: This model is used to describe
enzyme-catalyzed reactions, particularly when enzyme concentrations are
much lower than substrate concentrations. Vmax is the maximum rate, A is
the substrate concentration, and Km is the Michaelis constant (the substrate
concentration at which the reaction rate is half of Vmax).

3. Hill Equation: This model is often used when there is cooperativity or
interaction between multiple binding sites on a molecule (like a protein or
enzyme). The Hill coefficient n represents the degree of cooperativity.

Reaction

Subsfrate Products

10



Inhibition & Activation

Inhibition and activation also play crucial roles in metabolic
models:

e Inhibition: This occurs when a molecule binds to an
enzyme and decreases its activity

o  competitive (bind to the active site and
compete with the substrate)

o non-competitive (bind to a separate site and
change the enzyme's shape)

o uncompetitive (bind to the enzyme-substrate
complex).

o  Each type of inhibition changes the
parameters (Vmax, Km) in distinctive ways.

e  Activation: This is when a molecule binds to an
enzyme and increases its activity. This can lead to an
increase in the maximum reaction rate (Vmax) or a
decrease in the Km value, indicating an increased
affinity of the enzyme for its substrate.

https://www.khanacademy.org/science/ap-biology/cellular-energetics/environmental-impacts-on
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Drug-Drug Interactions (DDI)

Drug-drug interactions (DDIs) occur when one drug affects the
pharmacokinetics or pharmacodynamics of another, often via
metabolism.

In metabolism, the most common mechanisms are:

e Enzyme inhibition: one drug blocks the enzyme that
metabolizes another — increased drug levels, risk of
toxicity

e Enzyme induction: one drug increases enzyme activity —
decreased drug levels, risk of therapeutic failure

CYP450 enzymes, especially CYP3A4, CYP2D6, and CYP2C9, are
frequent targets of metabolic DDlIs.

Examples:

e Rifampin (inducer) + oral contraceptives — contraceptive

failure

e Fluoxetine (inhibitor) + codeine — reduced activation to
morphine

e  Clarithromycin (inhibitor) + midazolam — prolonged
sedation

Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J
Med. 2005 May 26;352(21):2211-21. doi: 10.1056/NEJMra032424. PMID: 15917386.

Table 2. Common Drug

h

itors, and |

ducers of CYP3A,

According to Drug Class.*

CYP3A Substrates

Calcium-channel
blockers
Diltiazem
Felodipine
Nifedipine
Verapamil
Immunosuppres-
sant agents
Cyclosporine
Tacrolimus
Benzodiazepines
Alprazolam
Midazolam
Triazolam
Statins
Atorvastatin
Lovastatin
(Not pravastatin)
Macrolide antibiotics
Clarithromycin
Erythromycin
Anti-HIV agents
Indinavir
Nelfinavir
Ritonavir
Saquinavir
Others
Losartan
Sildenafil

CYP3A Inhibitors

Calcium-channel blockers
Diltiazem
Verapamil

Azole antifungal agents
Itraconazole
Ketoconazole

Macrolide antibiotics
Clarithromycin
Erythromycin
Troleandomycin
(Not azithromycin)

Anti-HIV agents
Delavirdine
Indinavir
Ritonavir
Saquinavir

Others
Grapefruit juice
Mifepristone
Nefazodone

CYP3A Inducers

Rifamycins
Rifabutin
Rifampin
Rifapentine

Anticonvulsant agents
Carbamazepine
Phenobarbital
Phenytoin

Anti-HIV agents
Efavirenz
Nevirapine

Others
St. John’s wort

cy virus.

* These inhibitors and inducers can interact with any CYP3A substrate and may
have important clinical consequences. HIV denotes human immunodeficien-

83

Antibiotics -

Contraceptives

%
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Drug-Drug Interactions (DDl

A
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15%  45%%*
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Figure 1. First-Pass Metabolism after Oral Administration of a Drug, as Exemplified by Felodipine and Its Interaction with Grapefruit Juice.
CYP3A enzymes (e.g., CYP3A4) present in enterocytes of the intestinal epithelium extensively metabolize felodipine during its absorption,
and on average only 30 percent of the administered dose enters the portal vein (solid line). Subsequently, CYP3A enzymes in the liver further
metabolize the drug so that only 15 percent of the dose is bioavailable and finally reaches the systemic circulation and is able to exert its ef-
fects. Grapefruit juice selectively inhibits CYP3A in the enterocyte, with the net result being an increase in the oral bioavailability of felodipine
by a factor of three, denoted by the asterisks and the dashed lines.

Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J
Med. 2005 May 26;352(21):2211-21. doi: 10.1056/NEJMra032424. PMID: 15917386. 13




Drug-Drug Interactions (DDI)
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Figure 3. Mechanism of Induction of CYP3A4-Mediated
Metabolism of Drug Substrates (Panel A) and the Result-
ing Reduced Plasma Drug Concentration (Panel B).

In Panel A, an inducing agent (Drug I) interacts with the
nuclear receptor PXR (pregnane X receptor), which
forms a heterodimer with the retinoid X receptor (RXR),
which in turn binds to cognate recognition sites in the 5'
regulatory region of the CYP3A4 gene. As a result, tran-
scription of DNA is up-regulated, leading to increased
synthesis of CYP3A4 enzyme and enhanced oxidative
metabolism of its substrates (Drug S). This causes a re-
duction in the plasma drug concentration as exemplified
by felodipine (Panel B) and, subsequently, decreased
drug effects. The same molecular mechanism is also re-
sponsible for the induction of other metabolizing en-
zymes and membrane transporters important in drug
disposition. Comparison of the plasma felodipine con-
centration—time profiles in Panel B with those in Figure
2A indicates the wide range of CYP3A activity that is pos-
sible. I bars denote SEs. Panel B was adapted from
Capewell et. al.,8 with the permission of the publisher.

Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J
Med. 2005 May 26;352(21):2211-21. doi: 10.1056/NEJMra032424. PMID: 15917386. 14
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Grzegorzewski, HM. Tautenhahn,

bioRxiv 2023.04.12.536571 (preprint). doi:10.1101/2023.04.12.536571

A physiologically based pharmacokinetic model for CYP2E1 phenotyping via chlorzoxazone. J. Kiittner,
J

M. Konig
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