sensitivity.sensitivity_sobol
sensitivity.sensitivity_sobol
Global sensitivity analysis using Sobol indices.
This module provides routines for variance-based global sensitivity analysis using Sobol indices. Sobol analysis decomposes the variance of model outputs into contributions from individual parameters and their interactions.
The following indices are computed:
- First-order indices (S1)
- Total-effect indices (ST)
- Associated confidence intervals
Sampling is based on Saltelli’s extension of the Sobol sequence and requires (2D + 2) * N model evaluations for D parameters.
References:
- Sobol, I. M. (2001). Math. Comput. Simul., 55, 271–280.
- Saltelli, A. (2002). Comput. Phys. Commun., 145, 280–297.
- Saltelli et al. (2010). Comput. Phys. Commun., 181, 259–270.
Classes
| Name | Description |
|---|---|
| SobolSensitivityAnalysis | Global sensitivity analysis based on Sobol method. |
SobolSensitivityAnalysis
sensitivity.sensitivity_sobol.SobolSensitivityAnalysis(
sensitivity_simulation,
parameters,
groups,
results_path,
N,
seed=None,
n_cores=None,
cache_results=False,
**kwargs,
)Global sensitivity analysis based on Sobol method.
Methods
| Name | Description |
|---|---|
| calculate_sensitivity | Calculate the sensitivity matrices for SOBOL analysis. |
| create_samples | Create samples for sobol. |
calculate_sensitivity
sensitivity.sensitivity_sobol.SobolSensitivityAnalysis.calculate_sensitivity(
cache_filename=None,
cache=False,
)Calculate the sensitivity matrices for SOBOL analysis.
create_samples
sensitivity.sensitivity_sobol.SobolSensitivityAnalysis.create_samples()Create samples for sobol.
Generates model inputs using Saltelli’s extension of the Sobol’ sequence
The Sobol’ sequence is a popular quasi-random low-discrepancy sequence used to generate uniform samples of parameter space.